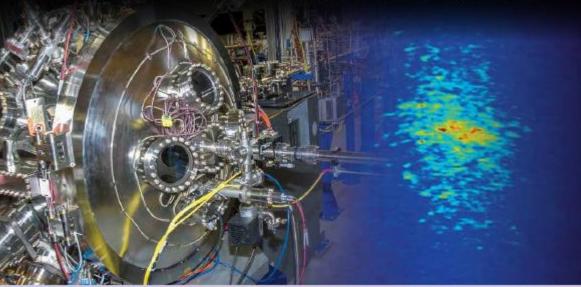
NSLS-II Strategic Planning Workshop and SRI 2015 Report

Qun Shen
UEC Town Meeting
August 5, 2015



NSLS-II Strategic Planning Workshop

Continuing the development of beamlines to advance science and technology

September 24-25, 2015 Brookhaven National Laboratory www.bnl.gov/nsls2spw

The 2015 NSLS-II Strategic Planning Workshop will launch selection of the next wave of NSLS-II beamlines. Following review of the current NSLS-II strategic plan and the new beamline development process, invited presentations from leaders in the field will provide background for the central focus of the workshop – an 'Open Call' for contributed talks from the User Community on new beamline concepts and the partnerships to drive them.

Workshop Goals:

- Review NSLS-II current suite of capabilities and identify capability gaps
- Identify opportunities for development of world-leading capabilities or novel approaches
- Identify shortages in capacity
- Identify university /industry and NSLS-II co-leads to drive the development of new beamline concepts

Strategic Planning Process in Progress

From 2014	Scattering				Diffraction							Struct Biology					Spectroscopy								Imaging								
NSLS-II Beamline	IXS	CHX	CSX-1	SMI	CMS	XPD-1	XPD-2	ISR	BMM	MPP	НЕХ	MRE 4DE	TEC	FMX	ΓΙΧ	NYX	SM3	XFP	CSX-2 ESM	ISS	SST-1	SST-2	OAS	FIS/MET	TES	SRX	NXH	FXI	MID/HXT XFN	IRI	CDI	SMF	STX
•Emergent Behavior from Complexity																																	
 Correlated systems (magnetism, superconductivity, multi-ferroics,) 																																	
•Collective dynamics (phonons, magnons, electronic excitation, nanoscale excitation,)																				П													
 Non-equilibrium physics (phase transition, jamming, viscous flow,) 																				П													
•Soft matter & biomaterials (nature inspired materials, disorder dynamics,)																																	
•Mastering Materials Synthesis and Properties																																	
•Materials genome (novel materials, nanoparticles, structural phases, grain mapping,)																																	
•Materials under extreme conditions (high P, high T, high field, radiation environment,)																																	
•Materials processing (annealing, fatigue, crack formation, deformation, in operando,)													П																				
•Materials synthesis and growth (nucleation mechnisms, growth kinetics,)																																	
•Energy Systems and Materials																																	
•Catalysis (heterogenous catalysis, in-situ analysis, redox states,)																																	
•Energy storage (electrochemistry, electrolyte structures, battery systems operando,)																																	
Materials for nuclear energy (defect formation, irradiated chemistry changes,)																																	
•Photovoltaics (solar cells, artificial photosynthesis,)																																	
•Environment and Earth Ecosystem																																	
•Geochemical processes at Earth surface (nutrients and toxins transport,)																																	
•Biogeochemistry of metals (element cycling,)																																	
•Plant ecosystems (microbes, metal uptake, biofuels, ecological impact,)																				П													7
•Climate and atmospheric science (CO2 sequestration, aerosol particles,)																																	
•Structures and Functions of Life																																	
•Structural biology (structures of bio-macromolecules & assemblies, protein folding,)																																	
 Enzymatic activities (active sites, transient structures, ligand binding, drug designs,) 																																	
•Cell and systems biology (protein functions, cell assemblies, tissue analysis,)																																	
Biological imaging & bioengineering (evolutionary biology, biomechanics,)																																	
	Beamline under development with secondary research focus																																
		Beam	line ι	ındeı	r deve	lopm	nent v	with	prim	ary r	resea	arch foo	cus																				
		Beam	line f	or fu	ture o	develo	opme	ent																									
		Doam	lino o	n ho	JI4																												

Workshop Agenda

	NSLS-II Strategic Planning Workshop									
Thursda	v Sontor	phor 24								
Hiursua	ıy, Septem									
	la	Plenary Session	A							
Start	Finish	Large Physics Seminar Room	4							
8:00 am	8:30 am	Breakfast (provided) - Physics Lounge	4							
8:30 am	8:45 am	Welcoming Remarks - Jim Misewich								
8:45 am	9:30 am	Strategic Plan & Workshop Charge - John Hill								
9:30 am	10:15 am	Beamline Development Process - Qun Shen								
10:15 am	10:45 am	Coffee Break - Physics Lounge								
10:45 am	11:15 am	Gerd Materlik (UCL)	1							
11:15 am	11:45 am	Franz Hennies (MAX-IV)	1							
11:45 am	12:45 pm	Lunch (provided) - Physics Lounge								
			Break-Out Sessions							
		Emerging Properties from Complexity	Materials Discovery & Operando	Mesoscale Imaging Biology & Environment						
Start	Finish	Large Physics Seminar Room	Hamilton Seminar Room	Large CFN Conference Room						
1:00 pm	1:30 pm	Oleg Shpyrko (UC San Diego)	Paul Fuoss (ANL)	Tony Lanzirotti (ANL)						
1:30 pm	2:00 pm	Mathieu LeTacon (Max Planck Inst)	Joel Brock (CHESS)	Carolyn Larabell (UC San Francisco)						
2:00 pm	2:30 pm	Christopher Soles (NIST)	Jinghua Gou (ALS)	So Iwata (SACLA)						
2:30 pm	3:00 pm	Coffee Break - Physics Lounge	Coffee Break - entry Hamilton Sem. Rm.	Coffee Break - entry CFN Conf Room						
3:00 pm	4:30 pm	Concept Talks: Emerging Prop Complexity	Concept Talks: Mat Discovery & Operando	Concept Talks: Meso Imaging Bio & Enviro						
		Events								
5:00 pm	6:00 pm	Reception - NSLS-II Lobby	1							
6:00 pm	6:30 pm	Tours NSLS-II	1							
		Dinner - on your own	<u> </u>							

Co-sponsored by NSLS-II UEC

Workshop Agenda

NSLS-II Strategic Planning Workshop Friday, September 25 Plenary Session Start Finish Large Physics Seminar Room 8:00 am 8:30 am Breakfast (provided) - Physics Lounge 8:30 am 9:00 am Harald Reichert (ESRF) **Break-Out Sessions Emerging Properties from Complexity** Mesoscale Imaging Biology & Environment Materials Discovery & Operando Start Finish Large Physics Seminar Room Hamilton Seminar Room Large CFN Conference Room 9:30 am 11:00 am Concept Talks: Emerging Prop Complexity Concept Talks: Mat Discovery & Operando Concept Talks: Meso Imaging Bio & Enviro Plenary Session 11:00 am 11:30 am Coffee Break - Physics Lounge Large Physics Seminar Room

- Everyone is invited to participate in this important event
- This workshop will launch the development process for the next rounds of beamlines at NSLS-II
- Beamline development proposals (BDPs) will follow an updated procedure https://www.bnl.gov/nsls2spw/files/pdf/BDP-Process.pdf

12:30 pm

1:30 pm

Break-Out Summaries

Lunch (provided) - Physics Lounge

11:30 am

12:30 pm

Four Steps in Beamline Development Process

- Discuss with NSLS-II management to determine whether the proposed concept is aligned with the strategic plan for the facility and likely to meet all of the review criteria (next slide)
- Submit a Beamline Development Pre-Proposal (BDPP, up to 3 pages).
 - -1st BDPP deadline is October 30, 2015. Future BDPPs can be submitted by GUP deadlines. BDPPs are reviewed by NSLS-II management with solicited external input as required
 - —If a BDPP is approved, NSLS-II commits to partnering with the BDPP team in developing a high-quality BDP, including committing resources to hold a workshop and to assist in beamline pre-conceptual design
- Submit the BDP before the assigned BDP submission deadline
 - BDP is up to 10 pages and is similar in structure to the BDPP with each section providing more detailed information
- Prepare the Funding Proposal(s) for submittal
 - At this stage, an integrated project team will be formed comprised of NSLS-II staff including scientific, engineering, and project controls support together with selected members of the BDP team

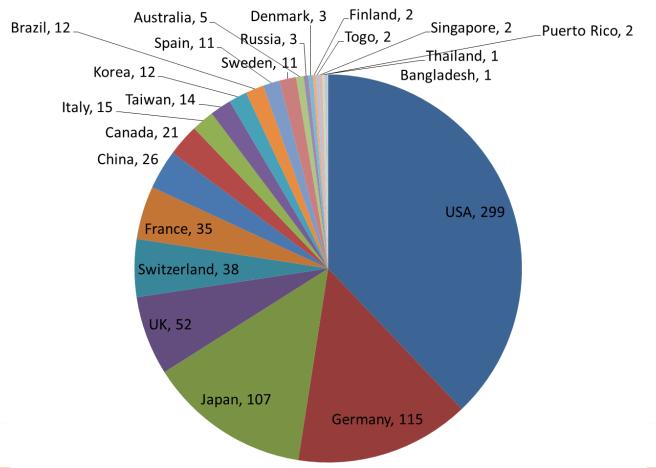
BDP Review Criteria

- Science Case:
 - Potential to address important scientific and/or societal questions, and consistent with the facility goals as stated in the NSLS-II Strategic Plan
- Funding:
 - Credible potential funding scenario for the projected beamline costs
- User Demand:
 - Evidence of interest, engagement, and support by the user community
- Performance:
 - Performance necessary to fulfill its scientific mission, with characteristics well matched to the NSLS-II source
- Technical Feasibility
- Portfolio Impact:
 - Contribute to a balanced NSLS-II portfolio of beamline techniques and complement beamline resources at other synchrotron facilities
- Quality of Proposers

International Conference SRI

July 6-10, 2015

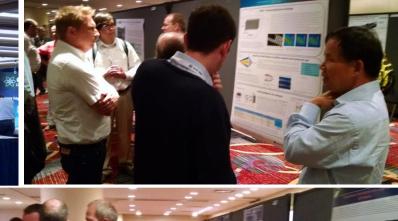
Co-sponsored by a number of sponsors including NSLS-II UEC


Keynote & Plenary Talks	14
Oral Presentations	175
Poster Presentations	438
Total	627

789 Registered Participants Representing 23 Countries

USA	299
Germany	115
Japan	107
UK	52
Switzerland	38
France	35
China	26
Canada	21
Italy	15
Taiwan	14
Korea	12
Brazil	12
Spain	11
Sweden	11
Australia	5
Russia	3
Denmark	3
Finland	2
Togo	2
Singapore	2
Puerto Rico	2
Thailand	1
Bangladesh	1

Well Attended Plenary & Oral Sessions



Vendor Exhibition and Poster Sessions

67 vendors 438 posters

Banquet Dinner

Broadway Ballroom, 6th Floor Marriott Marquis, New York City Thursday, July 9, 7:00 PM - 9:30 PM

After-Dinner Speaker: Professor Joel Hurowitz

Stony Brook University

NASA's Mars 2020 Rover Mission: The PIXL in-situ X-ray Investigation and Opportunities for the Analysis of Returned Martian Samples

Next SRI will be in Taipei, late May 2018

TPS
Taiwan Photon Source